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A SEMIPRIME MORITA CONTEXT RELATED TO 
FINITE AUTOMORPHISM GROUPS OF RINGS 

BY 

JAMES OSTERBURG 

ABSTRACT 

A Morita context relating the fixed ring and the skew group ring introduced by 
M. Cohen is studied. If the skew group ring is semiprime and R a satisfied a PI, 
then R satisfies a PI of degree _-< I G I d. We also discuss the Galois correspon- 
dence for the maximal quotient ring of a free algebra. 

Introduction and preliminaries 

Let R be a ring with identity and G a finite group of automorphisms of R. Let 

R 6 = {r E R  I rg = r for all g E G}, called the fixed ring. We study a Morita 

context between R e and the skew group ring S = R*G.  This context was 

introduced by M. Cohen [1]. There she examines the situation of S semiprime 

which implies that the trace is nondegenerate and R is semiprime. There are two 

important cases of when S is semiprime: Let R be semiprime (1) if R has no I G [ 
torsion by Fisher-Montgomery [14, theorem 7.4], (2) G is X-outer  Montgomery 

[14, theorem 3.17]. 
In this note, we continue the study of the assumption that S is semiprime. The 

idea is to study group actions of semiprime nonsingular rings by passing to the 
skew group ring of the quotient ring, then returning to R *G and finally to R. 

This is similar to the plan in Goursaud, Osterburg, Pascaud and Valette [5]. The 

difference is that in [5], we assumed the algebra of the group is semiprime, which 

is a more general assumption; however, the proofs to follow are considerably 

easier. 

We begin this note by proving if R * G  is von Neumann regular then R 

contains an element of trace one and R a is a "conner" ring of R * G. We then 

study semiprime nonsingular rings R and their quotient rings O, proving among 
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other things that Q is G-Galois over Q~, if G is X-outer. We also give an 

example of a commutative regular ring and an X-outer group of order 2 such 

that R is not f.g. over R ~. Continuing an idea of Lorenz-Passman [9] we prove if 

R * G is semisimple Artinian then R is f.g. over R ~ and a bound on the number 

of generators is also given. 

Then we show if R * G is semiprime and R c satisfies a PI of degree d, then R 

satisfies a PI of degree <= I G I d. V. K. Kharchenko showed this result if R has no 

IGI torsion [14, theorem 6.5]. The other important time when R * G  is 

semiprime, namely G is X-outer, is a special case of [5, theorem C]. In fact, 

Goursaud et al. have shown if R and the algebra of the group are semiprime and 

RG satisfies a PI of degree d, then R satisfies a PI of degree <=lGId. 

We finish the paper by studying group actions on free algebras. Kharchenko 

has shown in [6] that every such action is X-outer. Using our previous results, we 

know the maximal quotient ring Q is G-Galois over its fixed ring. We then apply 

our result that the fixed ring of the quotient ring is the quotient ring of the fixed 

ring and known results about the Galois correspondence to prove if G acts 

homogeneously and T is an intermediate subring. Then the following are 

equivalent: 

(1) T = Q "  for some subgroup H of G. 

(2) T is a maximal quotient ring of an intermediate free subalgebra of R. 

We begin with some definitions mainly to explain the notation. We have tried to 

follow the definitions and notation in [14]. Let S = R *G be the skew group ring, 

i.e. the free R module with basis G, g r = r  ~ ' g  for r @ R ,  g E G .  We let 

trr  =EGr ~, r E R ,  the trace. 

LEMMA 1. I f  S is yon Neumann  regular then : (1) There exists a d E R with 

t rd = 1. (2) Let  t = E c g  ~ S. Then f = td is an idempotent and 49 : R ~ ---~ f R * Gf  

via x --*fxf is a ring isomorphism. 

PROOF. Since R * G  is regular we pick u = Y ~ u g g ~ R * G ,  s.t. t = t u t  = 

tr(E~u~)t, where t rx = Ecx ~, x E R. Let d = (E ug). It can be checked if f = td 

then f2 = f and 49 : R ~ ~ f R  * Gf, 49 (x)  = f x f  = x f  is a ring isomorphism. 

Let O = [[~maxR be the left maximal quotient ring. 

COROLLARY 1.1. Let  S be semiprime and R left nonsingular. Then R is 

semiprime and O ~ and O * G  are regular selfinjective. 

PROOF. R is semiprime by [1, theorem 1.21]. The group ring proof [18] goes 

over to the skew group ring situation, thus O * G  is left selfinjective. Let 
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u = F-,oqgg E Q*G s.t. uQ*Gu = 0. Find an essential G-invariant left ideal D 

of R s.i. Dqg CR. Thus Du C R * G  and D u ( R * G )  Du C_D(uQ*Gu)=O. So 

Du = 0, thus u = 0 and we have proven Q* G is semiprime. 

Now by [18, theorem 7.2.5] the Jacobson radical of Q*G is nilpotent, hence 0. 

Thus Q * G is yon Neumann regular [4, theorem 1.22], by Lemma 1 and [4, prop. 

9.8] Q C is regular selfinjective. 

Following [12], we say R is G-Galois over R ~ if there are r l , " . , r k ;  

r * , . . . , r ~  E R such that Er, r*,, = 81,g, where al,g = 1, if g = 1 and equals 0 if 

g ~  1. We also insist there is a d E R with t rd = 1. See also [1]. 

For the definition of X-outer, X-inner and G~,o see [14]. Consider the 

following statements: (i) Let O be regular, left selfinjective and G X-outer, 

(ii) O is prime regular left selfinjective and Q*G is prime. 

LEMMA 2. If either (i) or (ii) is true, then Q is G-Galois over Qa. 

PROOF. Every nonzero ideal of Q*G intersects O nonzeroly by [15, prop. 

2.11] and [14, lemma 3.16]. Let M be a maximal two sided ideal of Q*G. Using 

[4, cor. 9.15, theorem 8.20] we have (M N Q)*G is prime. For in (i) the center of 

Q*G is in O. Using Incomparability we have M = (M fq Q)*G [8, theorem 1.2]. 

Let t = Zog, by comparing coefficients, we see t ~  M for any maximal ideal M of 

Q*G. Thus QtO = Q*G. Hence O is G-Galois over Oa  by [1, lemma 1.24]. 

In [1] the following Morita context is introduced and studied. Let S = R * G  

s = Y.axgg, r E R, let sr = Eaxgr g ' and rs = Y,(rx~) '. With these actions we have 

V = R~Rs and W = sRR G. Let 

[ ,  ] : W ~ V - - + S ,  [W, V l = w t v ,  t = ~ g ,  
G 

, ) : V @ W - - + R  ~ ( v , w ) = t r ( v w ) = ~ ( v w )  g. 
G 

Thus (R G, V, W, S) is a Morita context. 

COROLLARY 2.1. Let R be semiprime and nonsingular, G-X-outer. Then 

[ , ] : W @ V - + S i s  1 - 1 .  

PROOF. Let Q = left maximal quotient ring of R. By Lemma 2 and [12, prop. 

1.3),[ , ] : Q Q Q ~ O * G  is 1 - 1 .  

Next, we give a weak form of the normal basis theorem. 

COROLLARY 2.2. Let R be semiprime left and right Goldie, G-X-outer. Put 

T = R ~G C R*G.  Then TT is isomorphic to a cyclic submodule of R, that is 

essential even as a right R ~ submodule. 
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PROOF. Let Q be the classical quotient ring of R. Then G is completely outer 

on Q [13, cor. 1.8] and [12, section 6]. By [16, prop. 3.2] Q has a left and right 

normal basis element q, i.e. {qg Ig E G} is a free basis of Q over QO Now 

q = a - lb ,  a E R e, b ~ R [14, theorem 5.3]. Let x ~ Q, then a - i x  = Ea- lbg ,  di, 

di @QO. Thus {b, b g 2 , . . . , b  ~o} is a free basis of Q over Q~. Now let r E R ,  

r = Ybg, d~, d~ E Q~. Let c E QG be a common denominator,  i.e. d~ = c~c -~, 

ci E QO for each i. Thus we have for each r @ R there exists {c,c~,. . .  ,c,} CR ~ 

such that (*) rc = ZT=~ bg, c,, n = I G [. 

Let 4, : TT ~ RT, 4, (Er~ g,) = b.  Er~ g, = Eb g,r,, r~ E R o. Now 4' is additive and if 

s E R e, h E G, 4,(Er~g, sh) = 4,(Er, sg~h) = Ebg, hr3 = (Ebg, r~)sh. Thus 4, is a right 

T map. Finally (*) shows Im 4, is essential as a right R e module. 

In general, R does not have a normal basis. Let A be the Weyl algebra over 

the reals, i.e. generated by x, y with yx - xy = 1. Let h be the R automorphism 

of A such that x h =  - x ,  y h =  _ y ,  H = { 1 , h } .  By [1, theorem 1.27], A is 

H-Galois  over A ' .  Thus A *H = E n d A a - ,  if A had a normal basis over A n, 

A *H would be a 2 • 2 matric ring. But Zaleskii-Neroslavskii show this is 

impossible [21]. 

We give an example of a regular ring and a group of X outer automorphisms 

such that R is infinitely generated over R ~. Let F be the field of 2 elements and 

F, = F, n = 1 ,2 ,3 , . . . .  Consider the subring R of 1-IF, (the countable direct 

product) of sequences that eventually become constant. Let  g ~ Aut R that 

switches pairs, i.e. 

g(fl , f2,""",  f2n-1, f2~ "'')=(f2,f1,' ' ' ,f2,,f2,,-l, ' ' '). 

g2 = 1 and g is X-outer .  Assume {rl," ",r~} is a basis of R over R ~ Then after a 

certain point, say l, each of them becomes constant. Let m be an odd integer > I. 

Consider em E R which has a 1 in the mth  position and 0 everywhere else. Recall 

elements of the fixed ring are pairwise equal. So to achieve e,, as a combination 

of r l , - . . , r~ we need to add an odd number of the r,'s to get the 1 in the ruth 

position, but the r~'s are constant after l and the coefficients from the fixed ring 

have the same ruth and (m + 1)th components,  so we must also have a 1 in the 

(m + 1)th position. 

Notice the maximal quotient ring of R, Q = [IF,, is Galois over Q c according 

to Lemma 3. The Galois basis is a l = a * = ( 1 , 0 , 1 , 0 , 1 , 0 , . - . ) ,  a 2 = a  *= 

(0, 1, 0, 1, 0, 1 , . . .  ). Also if x E Q, x = tr(xal)a~ + tr(xa2)a2, tr a~ = 1. So Q is f.g. 

over Q G. 

LEMMA 3. Let  T be a ring, G a finite subgroup of  Aut T such that T * G  is 
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semisimple Artinian. Then T is a f.g. projective T c module. In fact, TT~ can be 

generated with <--_IGll(T) where l (T )  = length of TT. 

PROOF. Let A ={u  E T * G  lu .  T =0}, U = T * G / A .  U is semisimple Arti- 

nian and T is a faithful left U module. Let U = L 7 , O "  .OL~k, where Li 's  are 

the minimal pairwise nonisomorphic left ideals of U and n~ is the multiplicity of 

L~. Since uT is faithful there are n , ' "  ,rk elements of T s.t. L1 -~ Lir~ <- T. Since 

L, is an injective U module, L~r~ is a direct summand of T. One can check 

L~rl + . . .  + Lkrk is direct. Let n = max[n~ , . . . , nk ] ,  then U is isomorphic to a 

direct summand of L ~ @ ' " @ L ~ [ L ~ O " ' O L k . ] "  =di rec t  summand of T". 

Thus uT is a generator.  Using Morita 's  theorem [2, theorem 4.1.3], we conclude 

T is a f.g. projective T ~ module. 

So T ~ is semisimple Artinian [by lemma 1] and TT~ has finite length. We now 

show I (Tro)<=IGII(T) ,  where l( ) is length. Now we follow an idea of 

Lorenz-Passman [14, lemma 7.5]. Let V be a right T module and U a right T ~ 

submodule of V. We form W - - V @ T T * G .  Each w E W can be uniquely 

written w = Xov~@g, v~ E V. Let T r (w)  = Vl and U ~ = ( U @ f ) T * G .  We note 

f T * G t  = TOt. 

Thus U~t = ( U @ f ) T * G t  = U @ T ~ t  = U@t  as U is a right T ~ module. Let  

w" = T r ( w t ) ,  w ~ W. Then U ~" = T r ( U ~ t ) = T r ( U @ t )  = U. Thus if U r n _  <- 

U~-o_ -< VT~ and U"  = U 1~, we have U = U ~. 

Thus l (Tr~) <= l(TT.c)  <= I G II(T). Since T ~  is completely reducible, we see 

that TT~ can be generated by <-_IGI l (T )  elements of T. 

By L e s s  R we mean L is an essential left ideal of R. 

LEMMA 4. Let Q be regular left selfinjective such that Q* G is semiprime. Then 

if e 2 = e E Q such that Qe(resp. eQ)  is G-invariant, then there exists f 2 = f E OO 

such that Qe = Of(resp. eQ = fQ) .  

PROOF. By Corollary 1.1, QC is regular selfinjective. So there is a direct 

summand D of QO s.t. 0 # t r (Qe)  ess D. Assume D = QOf[f~ = f E QC]. Now 

let L = t r ( Q e ) @ Q  ~ (! - f ) .  One checks that L e s s  QO. Since t r (Qe) f  = t r (Qe) ,  

we have t r ( Q e ( 1 - f ) = O .  Thus e = ef so Qe c Q f .  

We now show QL ess Q. Since Q is selfinjective, there is a direct summand 

Q u [ u 2 = u  E Q] of Q s.t. QL ess Qu. Observe Q u / Q L  is the singular 

summand D of O ~ s.t. 0 # t r (Qe)  ess D. Assume D = QGf[f~ = f E QC]. Now 

Q / Q u  is nonsingular, we have ( Q u ) U Q L  is the singular submodule of Q/QL.  

Thus Qu = ( C)u ) g. 
So Qu is G-invariant ,  hence its annihilator ( 1 - u ) Q  is G-invariant .  
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Observe L t r [ ( 1 - u ) O ] = 0 ,  L essQC and Q~ nonsingular. Thus 1=  u 

or QLessQ.  Now Q L C _ Q e + Q ( 1 - f ) e s s Q .  Because e = e f ,  we have 

JOe + O ( 1 - f ) ] ( f e  - f ) = 0 .  Thus fe = f  or Of C_ Oe. Thus Oe = Of. 

Let Z(  ) be the left singular submodule. 

LEMMA 5. Let R * G be semiprime, R ~ left nonsingular. If Less  R o, then RL 

ess R. 

PROOF. As before, let O be the left maximal quotient ring of R. Since 

Z(RR) f3 R ~ C_ Z ( R  ~) = 0, the semiprimeness of R * G implies Z ( R )  = 0. Thus 

O is regular selfinjective. By Corollary 1.1, Q*G is semiprime. So take 

e 2 = e ~ O s.t. QL ess Oe with Lemma 4 we assume e E O ~. Thus if 0 ~ 1 - e, 

O ( 1 -  e) is G-invariant. Take K ess R, K a G-invariant left ideal such that 

0 ~ 1 - e, O(1 - e) is G-invariant. Take K ess R, K a G-invariant left ideal such 

that 0 F  K ( 1 -  e)_C R. Now (tr K ( 1 -  e))(q L = 0, which is a contradiction to L 

being essential. So QL ess Q, by [3, prop. 218, p. 45] we have RL ess R. 

THEOREM 6. Let R*G be semiprime. If either (a) Z(R~RC), (b) Z(R~R) or 
(c) Z(RR ) is O, then all are O. Moreover if (a), (b) or (c) is 0, then [QmaxR ] c = 

Qmax(R ~) where Qmax( ) denotes the left maximal ring of quotients. 

PROOF. By [1, cor. 1.5, theorem 1.21] ( a ) = 0  implies (b)--0 and (c)=0.  

Lemma 5 can be employed to show (c)= 0 implies (a).= 0. Assume one (hence 

all) of (a), (b) or (c) is zero. Let Q = QmaxR, by Lemma 1 and [3, prop. 2.11, p. 

46] to show Q ~ = Qmax (R G ) we must prove R ~ R ~ ess R ~ Q ~. But this is routine. 

LEMMA 7. Let Q be regular selfinjective G a finite group of X-outer au- 
tomorphisms of Q. Then o~0 is f.g. projective and injective. 

PROOF. Lemma 2 and [4, theorem 9.2]. 

THEOREM 8. Let R * G be semiprime such that R ~ satisfies a PI of degree d. 

Then R satisfies a PI of degree <<- [G [d. 

PROOF. The singular ideal of R ~ is zero and the maximal quotient ring of R ~ 

satisfies the same PI [10, theorem 2]. Using Lemma 1 we assume without loss of 

generality R ' G ,  R, and R e are regular selfinjective. 

We prove R has bounded index. It is enough to prove R / M  is Artinian for 

every maximal 2-sided ideal M of R [4, theorem 7.20 and concluding remarks]. 

Let M be a maximal two sided ideal of R, M ' =  O ~ M  g R = R/M' .  Now 

�9 G = R * G/M'*G, a regular ring. Together with [8, lemma 4.1], we have/~ *G 
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is a finite direct sum of simple rings. Recall from Lemma 1 there is a d E R with 

t rd  = 1. It is not hard to show (/~)c = R e / M , N  R e which is isomorphic to 

fR*Gf ,  a direct sum of simple rings, where f = dt, d = d +M'.  Since R e 

satisfies a PI, we know by Kaplansky's theorem/~ e is semisimple Artinian. Let 

/[ = L + M' be an essential left ideal of/~. Since/~ * G is regular, the trace of a 

nonzero G-invariant left ideal is nonzero [14, theorem 2.2]. Thus tr L is essential 

[14, lemma 5.1] forcing tr L to be /~e .  Thus/5. =/~ and we have proven/~ is 

Artinian. Thus by [4, theorem 7.20] R has bounded index and primitive factor 

rings are Artinian. Using [4, cor. 6.16, cor. 9.27] we have the intersection of the 

maximal two-sided ideals is 0. 

Let M be the maximal two sided ideal of R, M ' =  O e M  ~, T =  R/M' ,  a 
semisimple artinian ring. Then T * G ~ - R * G / M ' * G  is regular, so T*G is 

semisimple Artinian. Using Lemma 3, we have Tr~ is f.g. 

Thus T is a PI ring. 

To finish the argument we estimate the degree of the PI, basically we modify 

[14, prop. 6.1]. Let T = R~ f) M ~, M a maximal ideal of R. Assume T is a simple 

ring f.d. over its center Z and T*G is semiprime and G is inner. Then by [15, 

prop. 2.6], [17, lemma 2] the algebra of the group B is semisimple Artinian. Let 

1 = Z~,=, uk, where uk is a central primitive idempotent of B. Let Tj = ujTuj, Tj is 

a simple ring f.d. over is center Zuj. From [19, theorem 4, p. 111] it follows 

@zujBuj~ Mat,iT e, where nj = (Buj �9 Zuj). Note Ynj n = (B : Z )  and Tj 

satisfies a PI of degree => nd. 
Now R = MatqD, D a division ring T~ = MatqjDj, q = Zqj. Let (d : Z)  = k 2, so 

(Tj :Z )  = (kgj) 2. Thus it follows 2kqj <= dn,. So (t :Z )  = (kq) z = E, (kqi)2<-_ 
2(d2/4)n~<=(d2/4)n2<=(�89 f)2. So T satisfies S~ler-This handles the inner 

case. 

By the Skolem Noether theorem [19] G/Gin, is outer on T e,oo. Thus T e,-o can 

be embedded in Mle I(T G'-o) [I4, theorem 2.7]. This finishes the care of T simple. 

We handle the general case exactly as in [14, prop. 6.1, p. 91]. Thus R~ 0 M' 
satisfies S~lel. Since O M = 0, we see R satisfies Sdlel. 

We conclude with some remarks concerning X-outer groups and G-Galois 

extensions. The most elegant case of a free algebra over a field was studied by 

Kharchenko in [6]. Combining his results with previous results we obtain the 
following result. 

Let k be a field R = k ( x l , . . . , x , ) ,  the free algebra, G a finite group of 

automorphisms. Let O be the maximal left quotient ring of R. O is a simple 

regular selfinjective ring [20, corollaire 2.3]. We say T is an intermediate subring 

of R (resp. of O), if RG<=T<=R resp. QG <= T <-<_ Q). 
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THEOREM 9. With the above notation the following are equivalent: (1) T = 

Q "  for some subgroup H of G, (2) T is simple regular and se(linjective s.t. T /Q is 

nonsingular. Moreover if the elements of G are homogeneous then (1) is equivalent 

to : (3) T is the left maximal quotient ring of an intermediate free subalgebra of R. 

PROOF. It is known that the left maximal quotient ring of R is simple regular 

selfinjective, see [20]. 

G is X-outer by [7, prop. 2] or by [11, cor. 5C]. Thus G is completely outer on 

Q [14, example 3.6, 44]. Let T be a simple regular sefinjective intermediate 

subring of Q. By Lemma 7, o~, Q is f.g., hence TQ is f.g. Since TQ is nonsingular 

by [4, theorem 9.2], we have TQ is projective and injective. By [12, theorem 

6.10], T = Q "  for some/4.  

Conversely if H is a subgroup of G, T = Q "  is simple, because there is an 

element e such that t r , e  = ZHe h = 1 [14, theorem 2.5]. Let G = {,-J~=l Hgj recall 

from Lemma 2 there is a d C Q such that tr d = 1. Let e = ~=1 d gj. It can be 

easily checked t r ,  e = 1. T is regular selfinjective by Corollary 1 and TQ is 

nonsingular by Theorem 6. Finally assume G is homogeneous. From [7] we have 

a 1 - 1  correspondence between subgroups H of G and intermediate free 

subalgebras of R. Employing Theorem 6 we have our result. 

THEOREM 10. Let R be a prime left nonsingular ring, G X-outer, H a subgroup 

of G. Let F : R "  --~ R be an embedding, then F can be extended to an element of G. 

PROOF. Let Q be the maximal quotient ring of R. Use theorem to extend F 

to QH. Now quote [12, theorem 4.2]; note we need [14, cor. 6.17]. 
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